A color and texture based hierarchical K-NN approach to the classification of non-melanoma skin lesions
نویسندگان
چکیده
This chapter proposes a novel hierarchical classification system based on the K-Nearest Neighbors (K-NN) model and its application to nonmelanoma skin lesion classification. Color and texture features are extracted from skin lesion images. The hierarchical structure decomposes the classification task into a set of simpler problems, one at each node of the classification. Feature selection is embedded in the hierarchical framework that chooses the most relevant feature subsets at each node of the hierarchy. The accuracy of the proposed hierarchical scheme is higher than 93% in discriminating cancer and potential at risk lesions from benign lesions, and it reaches an overall classification accuracy of 74% over five common classes of skin lesions, including two non-melanoma cancer types. This is the most extensive known result on non-melanoma skin cancer classification using color and texture information from images acquired by a standard camera (non-dermoscopy).
منابع مشابه
Non-melanoma skin cancer diagnosis with a convolutional neural network
Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...
متن کاملDetection of Melanoma Skin Cancer by Elastic Scattering Spectra: A Proposed Classification Method
Introduction: There is a strong need for developing clinical technologies and instruments for prompt tissue assessment in a variety of oncological applications as smart methods. Elastic scattering spectroscopy (ESS) is a real-time, noninvasive, point-measurement, optical diagnostic technique for malignancy detection through changes at cellular and subcellular levels, especially important in ear...
متن کاملتشخیص ملانوم بدخیم براساس تغییرات بافت در تصاویر گرمانگاری مکانی
Background and Aim: Malignant melanoma is one of the most dangerous types of skin cancer. The aim of this study was to evaluate Spatial Thermographic Imaging (STI) in differentiating benign from malignant skin lesions. Methods: One-hundred and ten STI images were taken from the volunteers who had lesions being suspected for malignant melanoma. Benignity or malignancy of lesions was determine...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملVector Based Classification of Dermoscopic Images Using SURF
Detection of melanocytic skin lesion at an early stage increases the probability of being cured. Dermoscopy is a widely used diagnostic tool that aids the diagnosis of skin lesions and is proven to increase the accuracy of melanoma diagnosis. In this paper, vector based pattern analysis and classification approach for dermoscopic images are proposed. Feature plays a vital role in pattern recogn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012